& LE)g(|g: B Edsts ELF 5006:2025

EXPRESS mapping language specification

Thomas Thurman
Ronald Tse

October 19, 2025
5006:2025, Version 1.0 © 2025, ELF. All rights reserved

CONTENTS

FOrEWOIA oottt e e et e e s tbe e s s ba e e e aae e e aaeeenns iX
T d o Te [T« Fo] o 1N RS S X
1. SCOPE et e e s e s e e e e s e s s e raaae e e e e e e ennnannns 1
2. NOrmative referenCeS ...ovieeeceeceecee e e 1
3. Terms and definitions ...occveeeieeeeeeeee e 2
4. OVEIVIEW coeieeeiieeecieeeeiteeeireeesteeestee s etaeessaaeessaaaessnsaeeensaeesssaeensssenns 4
O I =T V=T - ST 4

4.2. Path StrUCTUIE et e 4

4.3. BaSiC @XAMPLE et 4

4.4. Path with attribute navigation ..o 5

4.5. Path with consStraints ..oooeeiecieeeeeeeeeee e 5

4.6. Role in 1ISO 10303 MOdULES .ooeeieiieeeeeeeeeee e 5

5. OPEIAtOrS oottt e e e s s e e e e s s s s anneraee s 6
T8 B 1= o V=T - | KRS 6

5.1.1. DeSCription oottt e 6

5.2. Subtype operator (Symbol: =) e 7

5.2.1. DESCHIPLION ittt ettt 7

5.2.2. Syntax pattern oo 7

5.2.3. SEMANTICS oottt 7

5.2.4. EXAMPLE oot 7

5.3. Supertype operator (Symbol: =>) e 7

5.3.1. DESCrIPION ittt s 7

5.3.2. Syntax pattern e 8

ii Standard All rights reserved

5.3.3. SEMANTICS ettt ae e 8

5.3.4. EXaMPLE oo 8
5.4. Forward navigation operator (symbol: ->) ..o 8
5.4.1. DESCriPtioN coociieeeeceeceecteee e e 8
5.4.2. Syntax pattern e 8
5.4.3. SEMANTICS oottt 8
544, EXaMPLE oo 9
5.5. Inverse navigation operator (symbol: -) ..o 9
5.5.1. DESCHIPION ittt 9
5.5.2. Syntax pattern ..o 9
5.5.3.5emMantiCs oo 9
5.5.4. EXAMPLE oottt 9
5.6. Constraint block OPerators cocveeeeeceecereseeeee e 10
5.6.1. DESCIIPLION coiieierieieeieeieete et sae e ens 10
5.6.2. GENEIAl oottt 10
5.6.3. Constraint start (operator:) .oeoeeeeceeeeeee 10
5.6.4. Syntax pattern ..o 10
5.6.5. Constraint end (operator:}) .o 10
5.6.6. Equality operator (symbol: =) oo, 10
5.6.7. Syntax pattern ..o 10
5.6.8. EXaMPLEe oot 11
5.7. Alternative section 0perators ooeevieiinieneencee e 11
5.7.1. DESCrIPtiON cooieiieiieeiecte ettt ereesbeesaeesae e 11
5.7.2. Required sections (operator: [...]) .ooevevevesieneeeeeenns 11
5.7.3. Syntax pattern e 11
5.7.4.SemMantiCsS oot 11
5.7.5. Alternative sections (operator: (...)) .ovevecesiereseeeeens 11
5.7.6. Syntax pattern e 11
5.7.7. SeMANTICS oottt 11
5.8. Aggregate access OPerators ..occccoicvieiiiiiiiiiiieeee e 12
5.8.1. DESCIIPtiON oottt 12
5.8.2. Element access operator (symbol: [i]) .coeveeveevveviecnennene, 12

Standard All rights reserved

5.8.3. Syntax pattern e 12

5.8.4. SEMANTICS oottt 12
5.8.5. Ordered element access operator (symbol: [n]) 12
5.8.6. Syntax pattern e 12
5.8.7. SEMANTICS oottt 12
5.9. SPecial OPErators e 13
5.9.1. DESCriPtioN coeieieeeeeceeee ettt 13
5.9.2. Negation operator (symbol: 1) ..o 13
5.9.3. Syntax pattern oo 13
5.9.4.SemMantiCs oo 13
5.9.5. Line continuation operator (symbol:\) ..ccveeiecieriien. 13
5.9.6. Syntax pattern oo 13
5.9.7. SeMANTICS oo 13
5.9.8. Comment operator (symbol: --) ..oeveiecieeeeeee 13
5.9.9. Syntax pattern ..o 14
5.9.10. SEMANTICS cieiiererireetetetere ettt 14
5.9.11. Select extension operators (symbol: *) ..cceceereiennnne. 14
5.9.12. Syntax pattern e 14
5.9.13. SemMantiCsS i 14
5.9.14. Syntax pattern oo 14
5.9.15. SemantiCs i 14
5.9.16. Supertype entity marker (symbol: ||) .ccocvrreeciennes 15
5.9.17. Syntax pattern e 15
5.9.18. SEMANtiCS i 15
5.9.19. Relationship tree marker (symbol: *) ..o, 15
5.9.20. Syntax pattern oo 15
5.9.21. SeMaNtiCS i 15
5.9.22. Required reference path marker (symbol:) 15
5.9.23. Syntax pattern i 15
5.9.24. SeMantiCsS oo 16

\% Standard All rights reserved

6. Navigation patterns ... 16

B.1. GENEIAL ettt sttt 16
6.2. Subtype chain navigation ... 16
6.2.1. Pattern description ..o 16
6.2.2. Syntax pattern .o 16
6.2.3. SeMaNtiCS i 16
6.2.4. EXAMPLE oot 17
6.3. Supertype chain navigation ..o 17
6.3.1. Pattern description ..o 17
6.3.2. Syntax pattern oo 17
6.3.3. SeMANLICS o 17
6.3.4. EXAMPLE oo 17
6.4. Forward attribute navigation ... 18
6.4.1. Pattern description ..o 18
6.4.2. Syntax pattern o 18
6.4.3. SeMANLICS oot 18
6.4.4. EXAMPLE oottt 18
6.5. Inverse attribute navigation ..o 18
6.5.1. Pattern description ...ecceeveeieeeeeee e 18
6.5.2. Syntax pattern o 18
6.5.3. SEMANLICS oo 19
6.5.4. EXAMPLE oot 19
6.6. Round-trip navigation ccocieiiiiieeeeeee e 19
6.6.1. Pattern description ..ocooieeeeeeeee s 19
6.6.2. Syntax pattern .o 19
6.6.3. SEMANTICS oottt 19
6.6.4. EXAMPLE oo 20
6.7. Constrained Navigation ...cocoieiiiieiineeeeeeceee e 20
6.7.1. Pattern description ..o 20
6.7.2. Syntax pattern .o 20
6.7.3. SeMANLICS oo 20

v Standard All rights reserved

6.7.4. EXAMPLE oo 20

6.8. Constrained round-trip navigation cccoceveniniininie 21
6.8.1. Pattern description ..o 21

6.8.2. Syntax pattern oo 21

6.8.3. SeMANLICS i 21

6.8.4. EXAMPLE oot 21

6.9. Mixed subtype and attribute navigation cccociiiiiininiee, 21
6.9.1. Pattern description ..ocooieieieeeeee e 21

6.9.2. Syntax pattern o 22

6.9.3. SEMANLICS oo 22

6.9.4. EXAMPLE oo 22

6.10. Alternative path navigation —cccvievieiereeee 22
6.10.1. Pattern description ccoceeeeieeiereeeeeee e 22

6.10.2. Syntax pattern .o 23

6.10.3. SEMANTICS ceerieieiceeeeeet ettt 23

6.10.4. EXaMPLE ittt 23

6.11. Required combined path navigation ..o, 23
6.11.1. Pattern description ccovevievieniniecreccceee e 23

6.11.2. Syntax pattern oo 23

6.11.3. SEMANICS oot 23

6.11.4. EXAMPLE ettt 24

7. CONSTIAINTS oot 24
T.1 GENEIAL ettt 24
7.2, CONSEraiNt SYNTAX eevvieriieriirierieseeseesie st sre e sreeseeesseesaesnesanesanens 24
7.2.1. BaSIC SLTUCTUIE ettt 24

7.2.2. Multiple constraints .ooooieveiiirienecce e 24
T.3.ValUB TYPES ettt ae e nae b s 25
7.3.1.SErNG ValuES oottt 25

7.3.2. NUMEric Values oo 26

7.3.3. Boolean and logical values ccooeeiriiiiininineeeeee 26

7.3.4. Enumeration values ..o 26

Standard All rights reserved

Vii

Standard

7.4. Negated coNStraints ..ooooieiiieeeee et 27

TAL SYNTAX ettt s st e s e s e s 27
T.4.2.SemMaNtiCS oot 27
TA3.EXAMPLE et 27

7.5. Constraint application ..o 27
7.5.1. Applying to current entity oo, 27

7.5.2. Applying during navigation ccceeieviinenenieeeee, 27

7.6. Constraint validation ..o 28
7.6.1. Entity validation ..o 28

7.6.2. Attribute validation ..o 28

7.6.3. Value validation ..o 28

7.6.4. Type compatibility .ooeeeeeeeeeeereeee e 28

7.7. Common constraint patterns ... 29
7.7.1. Relationship type constraints ...ccceceveeeeecieeeeeeee 29

7.7.2. Geometry type constraints coccvvivveniieniereeee 29

7.7.3. Description constraints .oocovvevviineenenreeenreneee e 29

7.7.4. Multiple attribute constraints cccoccevvivvineeneniiiiene, 29

8. Validation rules ..o 30
8.1 GENEIAL e 30
8.2. Entity validation ..o e 30
8.2.1. Entity eXiStence cvviirieeieeeeeeee e 30

8.2.2. Entity name case sensitivity ...oocevverennenieneee 30

8.3. Relationship validation ... 31
8.3.1. Subtype relationship validation cccceeeverenirieeee, 31

8.3.2. Supertype relationship validation ccccoeveverieviiennene, 31

8.4. Attribute validation .o 31
8.4.1. Attribute eXiSteNCe ..o 31

8.4.2. Attribute name case sensitivity ...ccccevievriienencenienee, 32

8.5. Navigation validation ..o 32
8.5.1. Forward navigation validation ccceoeiiiiinencnin. 32

8.5.2. Inverse navigation validation ..., 32

All rights reserved

8.5.3. Navigation continuity cocceiiiriinireeeee 33

8.6. Constraint validation ..ot 33

8.6.1. Constraint entity validation c.cccceveriecieeeeeeee, 33

8.6.2. Constraint attribute validation cccooeeiriiiiiiiiee, 33

8.6.3. Constraint value type validation ccooeevieeeececieeens 34

8.7. Path completeness validation —ccceeveecieiinieeeeee e, 34

8.7.1. Start entity validation cccevieiieee e, 34

8.7.2. End entity validation cccccevrineniieeeeceeene 35

8.8. Error COLlECtion oot 35

8.9. Warning conditions coeoieiirireriieeeneeeeetee et 35

8.10. Validation OULPUL .oeiieeececeeeeeee ettt beens 35

8.10.1. SUCCESS OULPUL eeiiiiiieieeteeee et 35

8.10.2. Error outpULl e 36

8.10.3. Output fOrmats ..o 36

Annex A (normative) EXamples ccoevviiiiiiiiieceeceecece e 37
Annex B (informative) Bibliographyccccooiiiiriineeee 54

viii Standard All rights reserved

FOREWORD

The EXPRESS Language Foundation (“ELF”) is a registered public charity in the US that facilitates the
education, standardization, research, promotion, definition, and usage of information modelling
and programming languages, with a focus on the EXPRESS language family.

ELF works with international partners and experts across the globe, reflecting the international
nature of its mission. More information about ELF is available on the official website (https://www.
expresslang.org).

The procedures used to develop this document and those intended for its further maintenance are
described in the ELF Directives.

In particular, the different approval criteria needed for the different types of ELF documents should
be noted. This document was drafted in accordance with the editorial rules of the ELF Directives.

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ELF shall not be held responsible for identifying any or all such patent rights. Details
of any patent rights identified during the development of the document will be provided in the
Introduction.

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

This document was prepared by Technical Committee EXPRESS.

ix Standard All rights reserved

https://www.expresslang.org
https://www.expresslang.org

INTRODUCTION

0.1 General

The EXPRESS mapping language is a domain-specific language designed to express reference paths
between entities in a set of EXPRESS schemas.

It provides a formal syntax and semantics for specifying how entities in one schema relate to entities
in another schema through a series of navigations. These paths can include subtype and supertype
relationships, forward and inverse attribute navigations, and constraints on entity attributes.

The operators and syntax to express allow for these navigations to be defined precisely and
unambiguously.

The mapping language serves several purposes:

Documentation Provides a clear, machine-readable specification of how concepts of a conceptual
model described in EXPRESS maps to an implementation described in another
EXPRESS schema.

Validation Enables automated validation that mapping paths are correct and traverse valid
relationships in the EXPRESS schema.

Interoperability Ensures consistent interpretation of mappings across different tools and
implementations.

Maintenance Facilitates detection of broken mappings when schemas evolve.

0.2 Historical context

In ISO 10303 (STEP), requirements of the application modules are defined using Application
Resource Models (ARMs) expressed in EXPRESS.

The implementation of these requirements is defined using Module Interpreted Models (MIMs), also
expressed in EXPRESS.

The EXPRESS mapping language was developed to formally express the relationships between ARM
entities and MIM entities.

x Standard All rights reserved

1. SCOPE

This document describes the EXPRESS mapping language
used to express reference paths amongst a set of EXPRESS
schemas.

2. NORMATIVE REFERENCES

The following documents are referred to in the text in
such a way that some or all of their content constitutes
requirements of this document. For dated references,
only the edition cited applies. For undated references, the
latest edition of the referenced document (including any
amendments) applies.

ISO 10303-1:2024, Industrial automation systems and
integration— Product data representation and exchange —
Part 1: Overview and fundamental principles

ISO 10303-11:2004, Industrial automation systems and
integration— Product data representation and exchange
—Part 11: Description methods: The EXPRESS language
reference manual

1 Standard All rights reserved

3. TERMS AND DEFINITIONS

For the purposes of this document, the following terms and definitions
apply.

ISO and IEC maintain terminology databases for use in standardization at
the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— |EC Electropedia: available at https://www.electropedia.org

3.1 application resource model
ARM PREFERRED

conceptual model that represents application domain conceptsin a
neutral, implementation-independent manner

[SOURCE:]

3.2 module interpreted model
MIM PREFERRED

implementation model that maps ARM concepts to EXPRESS constructs
using entities and relationships from integrated resources

[SOURCE:]

3.3 reference path PREFERRED
sequence of navigation steps through EXPRESS schema entity

relationships, expressing how an entity in one schema relates to an entity in
another schema

3.4 subtype relationship PREFERRED

relationship where one entity inherits all attributes and constraints from
another entity, expressed in EXPRESS with the SUBTYPE OF construct

2 Standard All rights reserved

https://www.iso.org/obp
https://www.electropedia.org

3.5 supertype relationship PREFERRED

relationship where an entity serves as a base type for one or more
subtypes, providing attributes and constraints inherited by those subtypes

3.6 forward attribute navigation PREFERRED

navigation that follows an attribute from an entity to the entity it references

EXAMPLE Navigating from product definition through attribute
formationtoproduct definition formation.

3.7 inverse attribute navigation PREFERRED
navigation that finds entities referencing the current entity through a
specific attribute

EXAMPLE Finding all product definition relationship entities that
reference aproduct definition through their related product definition
attribute.

3.8 constraint block PREFERRED

expression that specifies conditions that entities or attributes must satisfy
during path navigation

EXAMPLE {product definition relationship.name = 'definition
usage'} requires the name attribute to equal the specified string value.

3.9 navigation step PREFERRED

single element in a reference path representing one traversal operation
(subtype, supertype, forward navigation, or inverse navigation)

3.10 path expression PREFERRED

complete reference path from one schema entity to another schema entity,
composed of at least one navigation step

3 Standard All rights reserved

4. OVERVIEW

4.1 General

The EXPRESS mapping language is a formal notation for specifying reference paths between entities
in EXPRESS schemas.

A reference path describes a sequence of navigation steps that traverse entity relationships in the
schema, starting from one schema entity and ending at another schema entity.

There are two types of reference paths used in EXPRESS mapping:

— Entity reference paths: Define how an entity in one schema relates to an entity in another
schema through a series of navigations.

— Attribute reference paths: Define how an attribute of an entity in one schema relates to an
attribute of an entity in another schema through a series of navigations.

4.2 Path structure

A reference path consists of one or more navigation steps, where each step represents:
— Asubtype or supertype relationship between entities;

— Forward navigation through an attribute to a referenced entity;

— Inverse navigation from a referenced entity back through an attribute;

— Optional constraints on entities or attributes.

4.3 Basic example

The following simple path shows navigation through subtype relationships:

FIGURE 1

land <=

stratum feature template component <=
laminate component <=

assembly component <=

component definition <=

product definition

This path indicates that 1and is a subtype of stratum feature template component,whichisa
subtype of 1aminate component, and so on, ultimately reaching product definition.

4 Standard All rights reserved

4.4 Path with attribute navigation
More complex paths include attribute navigation:

FIGURE 2

product definition <-

product definition relationship.related product definition
product definition relationship

product definition relationship.relating product definition ->
product definition

This path:
a) Startsfrom product definition

b) Navigates inversely through the related product definition attribute to find product
definition relationship entities

c) Then navigates forward through the relating product definition attribute back to another
product definition

4.5 Path with constraints

Paths can include constraints to specify required conditions:

FIGURE 3

product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}

This constrains the path to only product definition relationship entities where the name
attribute equals 'definition usage’.

4.6 RoleinISO 10303 modules

In ISO 10303 application modules, mapping files specify how each ARM entity and attribute maps to
MIM entities. These mappings appear in YAML files with the following structure:

FIGURE 4

ae: # Application elements

5 Standard All rights reserved

- entity: ARM Entity Name

aimelt:
content: mim entity name
refpath:
content: |-
{reference path here}
aa: # Attribute assertions

- attribute: attribute name
assertion to: Target ARM Entity
refpath:

content: |-
{attribute reference path here}

The refpath.content fields contain reference paths expressed in the mapping language specified
by this document.

5. OPERATORS

5.1 General
5.1.1 Description

The mapping language uses operators to express different types of navigation through EXPRESS
schema entity relationships.

Each operator has specific semantics defining how entities and attributes relate in the path
traversal.

The operators are described in the sections below.

TABLE 1 — SUMMARY OF OPERATORS

Operator Description Example
= Subtype relationship (left is subtype of right) entity a = entity b
=> Supertype relationship (left is supertype of right) entity a => entity b
- Inverse relationship (navigate backwards) entity a - entity b.attr
-> Forward relationship (navigate through attribute) entity a.attr -> entity b
{..} Constraint block {entity.attr = 'value'}
[...] Required section constraint [sectionl] [section2]
() Alternative section (altl) (alt2)
Required reference path path
[.. Supertype entity marker | | supertype entity] |
[1] Aggregate element access attr[i]
[n] Ordered aggregate nth element attr([n]
= Equality constraint attr = 'value'

6 Standard All rights reserved

TABLE 1 (CONTINUED)

Operator Description Example

\ Line continuation entity \

* Relationship tree structure *relationship*

- Comment -- this is a comment

* Select/enumeration extension select a * select b

* Inverse select/enumeration extension select_a * select b
V{.} Negative constraint !{entity.attr = 'bad'}

5.2 Subtype operator (symbol: -)

5.2.1 Description

The subtype operator = indicates that the left entity is a subtype of the right entity.
5.2.2 Syntax pattern

FIGURE 5

entity a = entity b

5.2.3 Semantics

— entity amust be defined as a subtype of entity binthe EXPRESS schema
— entity_ainherits all attributes and constraints from entity b

— The path continues from entity b

5.2.4 Example

EXAMPLE
land =
stratum feature template component

Indicates that 1and is a subtype of stratum feature template component

5.3 Supertype operator (symbol: =>)
5.3.1 Description

The supertype operator => indicates that the left entity is a supertype of the right entity.

7 Standard All rights reserved

5.3.2 Syntax pattern

FIGURE 6

entity a pass:[=] entity b

5.3.3 Semantics

— entity a mustbe defined as a supertype of entity binthe EXPRESS schema
— entity bisasubtypeofentity aand inherits from it

— The path continues from entity b

5.3.4 Example

EXAMPLE
product definition pass: [=]
part template definition

Indicates that product definitionisasupertype of part template definition.

5.4 Forward navigation operator (symbol: ->)
5.4.1 Description

The forward navigation operator -> navigates from an entity through one of its attributes to the
entity referenced by that attribute.

5.4.2 Syntax pattern

FIGURE 7

entity a.attribute name pass:[-] entity b

5.4.3 Semantics

— entity amusthave an attribute named attribute name
— The attribute must reference entity borasupertype ofentity b

— The path continues from entity b

8 Standard All rights reserved

5.4.4 Example

EXAMPLE

product definition relationship.relating product definition -
product definition

Navigates from product definition relationship through its relating product definition
attribute to product definition.

5.5 Inverse navigation operator (symbol: -)
5.5.1 Description

The inverse navigation operator - navigates backwards from a referenced entity to entities that
reference it through a specific attribute.

5.5.2 Syntax pattern

FIGURE 8

entity b -
entity a.attribute name
entity a

5.5.3 Semantics

— entity amusthave an attribute named attribute name
— The attribute must reference entity b orasupertype of entity b

— Thepathfindsallentity ainstancesthat reference the currententity bthroughattribute

name

— The path continues fromentity a

5.5.4 Example

EXAMPLE
product definition -
product definition relationship.related product definition
product definition relationship

Finds all product definition relationship entities that reference product definition through
their related product definition attribute

Standard All rights reserved

5.6 Constraint block operators
5.6.1 Description
5.6.2 General

Constraint blocks use curly braces {} to specify conditions that must be satisfied during path
navigation.

5.6.3 Constraint start (operator: {)
The constraint start operator { begins a constraint block.
5.6.4 Syntax pattern

FIGURE 9

{constraint expression}

5.6.5 Constraint end (operator: })

The constraint end operator } ends a constraint block.

5.6.6 Equality operator (symbol: =)

The equality operator = specifies that an attribute must equal a specific value.
5.6.7 Syntax pattern

FIGURE 10

{entity name
entity name.attribute name = value}

Where value is:

— Astring literal in single quotes for STRING attributes

— Anumeric literal without quotes for INTEGER, REAL, or NUMBER attributes

— Aboolean or logical literal (TRUE, FALSE, UNKNOWN) for BOOLEAN or LOGICAL attributes

— An enumeration value for ENUMERATION attributes

10 Standard All rights reserved

5.6.8 Example

EXAMPLE
{product definition relationship
product definition relationship.name = 'definition usage'}

Constrains the path to product definition relationship entities where the name attribute equals
'definition usage’.

5.7 Alternative section operators

5.7.1 Description

5.7.2 Required sections (operator: [..])

Square brackets [] enclose sections that must all be satisfied.

5.7.3 Syntax pattern

FIGURE 11

[section 1]
[section 2]

5.7.4 Semantics

— All enclosed sections must be satisfied

— Each section is a distinct path segment

5.7.5 Alternative sections (operator: (..))

Parentheses () enclose alternative sections where one alternative must be satisfied.
5.7.6 Syntax pattern

FIGURE 12

(alternative 1)
(alternative 2)

5.7.7 Semantics

— Exactly one of the enclosed alternatives must be satisfied

11 Standard All rights reserved

— Each alternative represents a different possible path

5.8 Aggregate access operators

5.8.1 Description

5.8.2 Element access operator (symbol: [i])

Square brackets with i [i] indicate access to any element of an aggregate attribute.
5.8.3 Syntax pattern

FIGURE 13

entity name.aggregate attribute[i]

5.8.4 Semantics

— The attribute must be an aggregate type (ARRAY, LIST, SET, or BAG)
— The notation accesses an arbitrary element

— The specific element accessed is not specified

5.8.5 Ordered element access operator (symbol: [n])

Square brackets with a number [n] indicate access to a specific element of an ordered aggregate.
5.8.6 Syntax pattern

FIGURE 14

entity name.aggregate attribute[n]

Where n is a positive integer.
5.8.7 Semantics

— The attribute must be an ordered aggregate type (ARRAY or LIST)
— The notation accesses the n-th element

— Thefirst element is at position 1

12 Standard All rights reserved

5.9 Special operators

5.9.1 Description

5.9.2 Negation operator (symbol: 1)

The negation operator ! negates a constraint.
5.9.3 Syntax pattern

FIGURE 15

!{entity name
entity name.attribute name = value}

5.9.4 Semantics

— The constraint is inverted

— The path excludes entities that match the specified condition

5.9.5 Line continuation operator (symbol: \)

The backslash \ indicates that the path expression continues on the next line.
5.9.6 Syntax pattern

FIGURE 16

long entity name a \
long _entity name b

5.9.7 Semantics

— Purely syntactic
— The pathis treated as if the line break did not exist

— Used for readability in complex paths
5.9.8 Comment operator (symbol: --)

The double dash -- introduces a comment.

13 Standard All rights reserved

5.9.9 Syntax pattern

FIGURE 17

entity name -- this is a comment
next entity name

5.9.10 Semantics

— Alltext from -- to the end of the line is ignored
— Used for documentation and annotations

— Does not affect path semantics

5.9.11 Select extension operators (symbol: *)

The select extension operator * indicates that a SELECT type extends another SELECT type.
5.9.12 Syntax pattern

FIGURE 18

select type a * select type b

5.9.13 Semantics

— select type aisextended toinclude all options from select type b
— Used in schema extension contexts

The inverse select extension operator indicates the inverse relationship.
5.9.14 Syntax pattern

FIGURE 19

select type a * select type b

5.9.15 Semantics

— select type a is an extension of select type b

— Equivalentto select type b * select type a

14 Standard All rights reserved

5.9.16 Supertype entity marker (symbol: | |)
The supertype entity marker | | encloses a supertype entity name.
5.9.17 Syntax pattern

FIGURE 20

| | supertype entity] |

5.9.18 Semantics

— Explicitly marks an entity as a supertype in the path

— Used for clarity in complex inheritance hierarchies

5.9.19 Relationship tree marker (symbol: *)

The relationship tree marker * indicates a relationship tree structure.
5.9.20 Syntax pattern

FIGURE 21

relationship entity

5.9.21 Semantics

— Multiple instances of the relationship entity may be assembled in a tree
— The path between the relationship entity and related entities is implied

— Used for complex recursive relationships

5.9.22 Required reference path marker (symbol:)

The required reference path marker encloses a required path segment.
5.9.23 Syntax pattern

FIGURE 22

path segment

15 Standard All rights reserved

5.9.24 Semantics

— The enclosed path segment must be present

— Used to emphasize mandatory portions of alternative paths

6. NAVIGATION PATTERNS

6.1 General

This clause describes common navigation patterns used in EXPRESS mapping reference paths.

These patterns represent typical ways ARM entities and attributes map to MIM entities through
schema relationships.

6.2 Subtype chain navigation
6.2.1 Pattern description

A subtype chain navigates through multiple subtype relationships from a starting entity to a base
entity.

6.2.2 Syntax pattern

FIGURE 23

subtype entity 1
subtype entity 2

base entity

6.2.3 Semantics

— Each entity is a subtype of the next entity in the chain
— The chain terminates at a base entity that is not itself a subtype

— Each step must be a valid subtype relationship in the EXPRESS schema

16 Standard All rights reserved

6.2.4 Example

EXAMPLE
contact size dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition

This path shows that contact size dependent land ultimately derives from product definition
through a chain of subtypes.

6.3 Supertype chain navigation
6.3.1 Pattern description

A supertype chain navigates through multiple supertype relationships from a base entity to
increasingly specific subtypes.

6.3.2 Syntax pattern

FIGURE 24

base entity =
supertype entity 1 =
supertype entity 2 =

specific subtype

6.3.3 Semantics

— Each entity is a supertype of the next entity in the chain
— The chain starts from a base entity and moves to more specific subtypes

— Each step must be a valid supertype relationship in the EXPRESS schema

6.3.4 Example

EXAMPLE
product definition =
part template definition =
single stratum template =
single stratum continuous template =
stratum feature template =
land physical template

17 Standard All rights reserved

This path shows progressive specialization from product_definition to the specific 1and physical
template entity.

6.4 Forward attribute navigation

6.4.1 Pattern description

Forward attribute navigation follows an attribute from an entity to the entity it references.

6.4.2 Syntax pattern

FIGURE 25

source entity.reference attribute - target entity

6.4.3 Semantics

— source entity hasan attribute named reference attribute

— Theattribute typeis target entityora SELECT type containing target entity
— The path continues from target entity

6.4.4 Example

EXAMPLE
product definition relationship.relating product definition -
product definition

Navigates from a product definition relationship to the product definition it relates through
the relating product definition attribute.

6.5 Inverse attribute navigation

6.5.1 Pattern description

Inverse attribute navigation finds entities that reference the current entity through a specific
attribute.

6.5.2 Syntax pattern

FIGURE 26

referenced entity -
referencing entity.reference attribute

18 Standard All rights reserved

referencing entity

6.5.3 Semantics

— referencing entityhasan attribute named reference attribute
— The attribute references referenced entity
— The pathfinds all referencing entity instances referencingthe current referenced entity

— The path continues from referencing entity

6.5.4 Example
EXAMPLE
product definition -

product definition relationship.related product definition
product definition relationship

Finds all product definition relationship entities that reference a specific product definition
through their related product definition attribute.

6.6 Round-trip navigation
6.6.1 Pattern description

Round-trip navigation combines inverse and forward navigation to traverse a relationship entity
connecting two entities.

6.6.2 Syntax pattern

FIGURE 27

entity a -

relationship entity.attribute to a
relationship entity

relationship entity.attribute to b -
entity b

6.6.3 Semantics

— Startsfromentity a
— Findsall re1ationship entity instancesreferencingentity a
— From those instances, navigates to entity b

— Effectively findsallentity brelatedtoentity athrough relationship entity

19 Standard All rights reserved

6.6.4 Example

EXAMPLE
product definition -
product definition relationship.related product definition
product definition relationship
product definition relationship.relating product definition -
product definition

Finds all product definition entities related to the starting product definition through product
definition relationship.

6.7 Constrained navigation

6.7.1 Pattern description

Constrained navigation adds conditions that entities or attributes must satisfy during path traversal.
6.7.2 Syntax pattern

FIGURE 28

entity name
{entity name
entity name.attribute name = constraint value}

6.7.3 Semantics

— The constraint applies to the current entity in the path
— Only entities satisfying the constraint are considered valid

— Multiple constraints may be specified for the same entity

6.7.4 Example

EXAMPLE
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}

Constrains the path to only those product definition relationship entities where the name
attribute equals 'definition usage'.

20 Standard All rights reserved

6.8 Constrained round-trip navigation
6.8.1 Pattern description
Combines round-trip navigation with constraints on the relationship entity.
6.8.2 Syntax pattern
FIGURE 29
entity a -
relationship entity.attribute to_a

relationship entity
{relationship entity

relationship entity.constraint attribute = constraint value}
relationship entity.attribute to b -
entity b

6.8.3 Semantics

— Navigatesfromentity athrough relationship entitytoentity b
— Only relationship entity instances satisfying the constraint are traversed

— Common pattern for relationship entities with type or role attributes
6.8.4 Example

EXAMPLE
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition

Finds related product definition entities specifically through product definition relationship
instances of type 'definition usage’.

6.9 Mixed subtype and attribute navigation
6.9.1 Pattern description

Combines subtype relationships with attribute navigation in a single path.

21 Standard All rights reserved

6.9.2 Syntax pattern

FIGURE 30

entity a
entity b

base entity -
relationship.attribute
relationship
relationship.other attribute -
target entity

6.9.3 Semantics

— First establishes the entity hierarchy through subtype relationships
— Then navigates through attributes and relationships

— Common in complex mappings involving both inheritance and association

6.9.4 Example

EXAMPLE
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =
part template definition

Establishes the subtype chain, navigates through relationships, and continues to supertypes.

6.10 Alternative path navigation
6.10.1 Pattern description

Specifies multiple alternative paths, where at least one must be valid.

22 Standard All rights reserved

6.10.2 Syntax pattern

FIGURE 31

(path alternative 1)
(path _alternative 2)

6.10.3 Semantics

— Exactly one of the alternatives must be satisfied
— Each alternative is a complete path segment

— Used when different schema patterns can satisfy the same mapping

6.10.4 Example

EXAMPLE
(product definition -
product definition formation.of product
product definition formation)
(product definition -
product definition context association.definition
product definition context association)

The target can be reached through either product definition formation OF product definition
context_association.

6.11 Required combined path navigation

6.11.1 Pattern description

Specifies multiple path segments that must all be satisfied.

6.11.2 Syntax pattern

FIGURE 32

[required segment 1]
[required segment 2]

6.11.3 Semantics

— Allrequired segments must be satisfied

— Each segment is a distinct portion of the path

23 Standard All rights reserved

— Used when multiple relationships must exist simultaneously

6.11.4 Example

EXAMPLE
[product definition =
characterized product definition =
characterized definition]
[product definition shape =
property definition]

Both the product definition characterization and the shape property definition must exist.

7. CONSTRAINTS

7.1 General

Constraints specify conditions that entities or attributes must satisfy during path navigation.

They enable precise mapping specifications by limiting paths to entities matching specific criteria.

7.2 Constraint syntax
7.2.1 Basicstructure

A constraint block is enclosed in curly braces and contains one or more constraint expressions.

Syntax:

FIGURE 33

{entity name
entity name.attribute name operator value}

7.2.2 Multiple constraints

Multiple constraints may be specified within a single block or across multiple blocks.

Syntax for single block:

24 Standard All rights reserved

FIGURE 34

{entity name
entity name.attribute 1 = value 1
entity name.attribute 2 = value 2}

Syntax for multiple blocks:

FIGURE 35

{entity name

entity name.attribute 1 = value 1}

{entity name

entity name.attribute 2 = value 2}
Semantics:

— All constraints must be satisfied

— Multiple constraints represent a logical AND condition

EXAMPLE
{product definition relationship
product definition relationship.name = 'definition usage'
product definition relationship.description = 'explicit'}

Requires both the name and description attributes to match.

7.3 Value types
7.3.1 Stringvalues

String values must be enclosed in single quotes.

Syntax:

FIGURE 36

{entity name
entity name.string attribute = 'string value'}

EXAMPLE

{product definition relationship

Standard All rights reserved

product definition relationship.name = 'definition usage'}
7.3.2 Numeric values

Numeric values (INTEGER, REAL, NUMBER) are specified without quotes.

Syntax:

FIGURE 37

{entity name
entity name.numeric attribute = numeric value}

EXAMPLE
{dimension count
dimension count.dim = 3}

7.3.3 Boolean and logical values

Boolean and logical values use keywords TRUE, FALSE, or UNKNOWN.

Syntax:

FIGURE 38

{entity name
entity name.boolean attribute = TRUE}

EXAMPLE
{representation item
representation item.optional flag = TRUE}

7.3.4 Enumeration values

Enumeration values are specified as identifiers without quotes.

Syntax:

FIGURE 39

{entity name
entity name.enum attribute = ENUM VALUE}

EXAMPLE
{geometric representation context

26 Standard All rights reserved

geometric representation context.coordinate space dimension = THREE D}

7.4 Negated constraints
7.4.1 Syntax
The negation operator ! inverts a constraint.

FIGURE 40

!{entity name
entity name.attribute name = value}

7.4.2 Semantics

— The path excludes entities matching the specified condition

— Equivalent to “attribute_name NOT EQUAL TO value”

7.4.3 Example

EXAMPLE
! {product definition relationship
product definition relationship.name = 'alternate'}

Excludes product definition relationship entities where name is 'alternate’.

7.5 Constraint application
7.5.1 Applyingto current entity
Constraints apply to the entity specified in the constraint block.

FIGURE 41

entity name
{entity name
entity name.attribute = value}

The constraint is checked when the path reaches entity name.
7.5.2 Applying during navigation

Constraints can be placed at any point in the path to filter entities during navigation.

27 Standard All rights reserved

28

EXAMPLE
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition

The constraint filters which product definition relationship instances are traversed.

7.6 Constraint validation
7.6.1 Entity validation

The constrained entity must:

— Existin the EXPRESS schema

— Appearin the path at the location where the constraint is specified
7.6.2 Attribute validation

The constrained attribute must:

— Exist on the specified entity

— Beaccessible (not private or restricted)

— Have a type compatible with the constraint value

7.6.3 Value validation

The constraint value must:

— Match the attribute’s base type (STRING, INTEGER, etc.)
— Follow proper literal syntax for the type

— For enumerations, be a valid enumeration value

7.6.4 Type compatibility

The following table shows required value syntax for each attribute type:

TABLE 2

Attribute type Value syntax Example

STRING Single-quoted string 'definition usage'
INTEGER Unquoted integer 42

REAL Unquoted decimal 3.14159

NUMBER Unquoted number 1000r2.5

BOOLEAN TRUE or FALSE TRUE

Standard

All rights reserved

(CONTINUED)

Attribute type Value syntax Example

LOGICAL TRUE, FALSE, or UNKNOWN
UNKNOWN

ENUMERATION Unquoted enumeration CARTESIAN
value

7.7 Common constraint patterns
7.7.1 Relationship type constraints

Constraining relationship entities by their type or role.

EXAMPLE
{product definition relationship
product definition relationship.name = 'definition usage'}

7.7.2 Geometry type constraints

Constraining geometric entities by their dimensionality or type.

EXAMPLE
{geometric representation context
geometric representation context.coordinate space dimension = 3}

7.7.3 Description constraints

Constraining by description attributes that specify roles or purposes.

EXAMPLE
{shape aspect
shape aspect.description = 'land interface terminal'}

7.7.4 Multiple attribute constraints

Requiring multiple attributes to satisfy conditions simultaneously.

EXAMPLE
{characterized object
characterized object.name = 'boundary'
characterized object.description = 'outer'}

29 Standard All rights reserved

8. VALIDATION RULES

8.1 General

Validation ensures that reference paths are correct and navigate valid relationships in the EXPRESS
schema repository.

All validation rules shall be applied to verify path correctness.

8.2 Entity validation
8.2.1 Entity existence

All entities referenced in a path must exist in the EXPRESS schema repository.
Rule:

— For each entity name in the path, the validator shall verify that an entity with that exact name
exists in the repository

Error condition:

— Ifan entity does not exist, the path is invalid
Error message shall include:

— The entity name that was not found

— The location in the path where the entity appears

— The source file and line number if available

EXAMPLE For the path:
non existent entity =

product definition

If non existent entity does not exist in the schema, the validator shall report: “Entity
‘non_existent_entity’ not found in repository”.

8.2.2 Entity name case sensitivity

Entity names in EXPRESS are case-insensitive, but the validator should use canonical case matching.
Rule:

— Entity name matching shall be case-insensitive

— Thevalidator may optionally warn if case does not match the schema definition

30 Standard All rights reserved

8.3 Relationship validation
8.3.1 Subtype relationship validation

For subtype operator =, the left entity must be a declared subtype of the right entity.
Rule:

— The validator shall verify that the left entity’s definition includes the right entity in its SUBTYPE
OF clause, either directly or through transitive subtype relationships

Error condition:

— If the subtype relationship does not exist, the path is invalid
Error message shall include:

— The two entity names involved

— Whether the relationship should be direct or transitive

— Asuggestion to verify the entity hierarchy

EXAMPLE For the path:
land =
product definition

The validator shall verify that 1and is a subtype of product definition, either directly or through
intermediate entities.

8.3.2 Supertype relationship validation

For supertype operator =, the left entity must be a declared supertype of the right entity.
Rule:

— Thevalidator shall verify that the right entity’s definition includes the left entity in its SUBTYPE
OF clause, either directly or through transitive relationships

Error condition:

— Ifthe supertype relationship does not exist, the path is invalid

8.4 Attribute validation
8.4.1 Attribute existence

All attributes referenced in navigation must exist on the specified entity.
Rule:

— Forforward navigation entity.attribute -, the validator shall verify that entity hasan
attribute named attribute

31 Standard All rights reserved

— Forinverse navigation — entity.attribute, the validator shall verify thatentity hasan
attribute named attribute

Error condition:

— Ifthe attribute does not exist, the path is invalid
Error message shall include:

— The entity name

— The attribute name that was not found

— Available attributes on the entity (as suggestion)
8.4.2 Attribute name case sensitivity

Attribute names in EXPRESS are case-insensitive.
Rule:
— Attribute name matching shall be case-insensitive

— Thevalidator may optionally warn if case does not match the schema definition

8.5 Navigation validation
8.5.1 Forward navigation validation

For forward navigation entity a.attribute — entity b:

Rules:

— Theattribute must existon entity a

— Theattribute type must be entity b oratype that canreferenceentity b

— Ifthe attribute type is a SELECT, entity b must be one of the SELECT options
Error conditions:

— Attribute does not existonentity a

— Attribute type is not compatible with entity b

— Attribute type is a basic type (STRING, INTEGER, etc.) and cannot reference an entity
8.5.2 Inverse navigation validation

Forinverse navigation entity b — entity a.attribute:
Rules:

— Theattribute must existon entity a

32 Standard All rights reserved

— The attribute type must be entity b oratype that canreferenceentity b
— The path is following the relationship backwards from entity btoentity a
Error conditions:

— Attribute does not existonentity a

— Attribute does not reference entity b
8.5.3 Navigation continuity

The validator shall verify that each navigation step properly connects to the next step.
Rule:

— The ending entity of one step must match or be compatible with the starting entity of the next
step

— For subtype/supertype chains, entities must be properly related
— For attribute navigation, the referenced entity must match the next entity in the path
Error condition:

— If navigation continuity is broken, the path is invalid

8.6 Constraint validation
8.6.1 Constraint entity validation

For each constraint, the constrained entity must:

— Existin the schema

— Appearin the path at or before the constraint location
Rule:

— Thevalidator shall verify that the entity specified in the constraint block exists and is part of the
current path context

8.6.2 Constraint attribute validation

For each constraint, the constrained attribute must:

— Exist on the specified entity

— Beaccessible (not DERIVED or INVERSE unless explicitly allowed)
Rule:

— Thevalidator shall verify that the attribute exists on the entity and can be constrained

33 Standard All rights reserved

Error condition:

— If the attribute does not exist or cannot be constrained, the constraint is invalid

8.6.3 Constraint value type validation

For each constraint value, the type must be compatible with the attribute type.

Rules for type compatibility:

TABLE 3

Attribute type Required value syntax Validation rule

STRING Single-quoted string Value must be a valid string literal
INTEGER Unquoted integer Value must be a valid integer

REAL Unquoted decimal Value must be a valid real number
NUMBER Unquoted number Value must be a valid number

BOOLEAN TRUE or FALSE Value must be TRUE or FALSE

LOGICAL TRUE, FALSE, or Value must be TRUE, FALSE, or UNKNOWN

UNKNOWN

ENUMERATION Unquoted identifier Value must be a valid enumeration item
SELECT Depends on selected type Value must match one of the SELECT options

Error condition:

— Ifvalue type does not match attribute type, the constraint is invalid
Error message shall include:

— The attribute name and its type

— The provided value and its inferred type

— Expected value format

EXAMPLE For a STRING attribute:

{entity.string attr = 'valid'} -- Valid
{entity.string attr = invalid} -- Invalid: missing quotes
{entity.string attr = 123} -- Invalid: wrong type

8.7 Path completeness validation
8.7.1 Start entity validation

The path should start with a valid entity from the ARM entity being mapped.

Rule:

— Thefirst entity in the refpath should match or be compatible with the ARM entity specified in the
mapping

Note: This rule may be relaxed for attribute mappings where the path starts from a different context.

34 Standard All rights reserved

8.7.2 End entity validation

The path should end with a valid MIM entity.

Rule:

— Thefinal entity in the path should be a valid MIM entity that can represent the ARM concept

Note: The specific MIM entity expected may be specified in the mapping’s aime1t field.

8.8 Error collection

The validator shall collect all errors rather than stopping at the first error.
Rule:

— Thevalidator shall continue processing the entire path

— Allerrors shall be collected and reported together

— Each error shall include sufficient context for diagnosis

8.9 Warning conditions

The validator may issue warnings for conditions that are not strictly invalid but may indicate
problems:

— Case mismatches between path and schema definitions
— Deprecated entities or attributes

— Excessively long paths that may indicate design issues
— Redundant navigation steps

— Constraints that are always true or always false

8.10 Validation output

8.10.1 Success output

For valid paths, the validator shall report:
— Path validation status: VALID

— Starting entity

— Ending entity

— Number of navigation steps

35 Standard All rights reserved

— List of entities traversed

8.10.2 Error output

For invalid paths, the validator shall report:

— Path validation status: INVALID

— List of all errors found

— Foreacherror:
— Error type (entity not found, invalid relationship, etc.)
— Error message
— Location in path (entity name, line number if available)
— Relevant path context

— Suggestion for correction if available

8.10.3 Output formats

The validator should support multiple output formats:
— Text format for human reading

— JSON format for programmatic processing

— YAML format for integration with other tools

36 Standard All rights reserved

ANNEX A
(NORMATIVE)

EXAMPLES

A.1 General

This annex provides comprehensive examples of EXPRESS mapping language reference paths drawn
from actual ISO 10303 module mapping specifications. Each example demonstrates specific patterns
and operators described in the normative clauses of this document.

A.2 Simple entity chains
A2.1 General

Simple entity chains demonstrate the most basic form of reference path navigation, using only
subtype and supertype operators.

A.2.2 Basic subtype chain

This example from 1SO 10303-1692 (Land) shows a simple subtype chain navigating from a

specialized entity to its base entity.
EXAMPLE — Simple subtype navigation
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition

This path specifies that:

— landisasu btype of stratum feature template component

- stratum_feature_template_componentisaSubtypeOflaminate_component
- laminateicomponentiSaSubtypeOfassemblyfcomponent

— assemblyicomponentisaSubtypeOfcomponentidefinition

37 Standard All rights reserved

- componentidefinitioniSaSubtypeOfproductidefinition

The path establishes the complete subtype hierarchy from the ARM entity 1.and to the base MIM entity

product definition.
A.2.3 Extended subtype chain

This example shows a longer subtype chain for more specialized entities.

EXAMPLE — Extended subtype navigation
plated passage dependent land =
inter stratum feature dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition

This path demonstrates:
— Multiple levels of specialization through subtype relationships

— Navigation from a highly specialized entity (plated passage dependent land)through
intermediate specializations to the base entity

— The hierarchical nature of entity classifications in ISO 10303

A.3 Round-trip navigation
A3.1 General

Round-trip paths navigate forward through relationships, then backward through inverse
relationships, demonstrating complex attribute-based navigation patterns.

A.3.2 Simple round-trip with constraint

This example from ISO 10303-1692 shows a complete round-trip pattern with a constraint.

EXAMPLE — Round-trip with constrained relationship
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous template =
stratum feature template =

38 Standard All rights reserved

land physical template

This path demonstrates:
— Subtype chain navigation (_) from 1and to product_definition

— Inverse attribute navigation () via product definition relationship.related product

definition
— Constraint application ({}) requiring name = 'definition usage'

— Forward attribute navigation (~) via product definition relationship.relating product

definition
— Supertype chain navigation (_) from product_definitionto land physical template

The complete path maps the ARM attribute derived from of entity nand to an instance of r.and
physical template inthe MIM.

A.3.3 Complex round-trip with multiple constraints

This example shows a more complex round-trip with detailed constraints.

EXAMPLE — Complex constrained round-trip
plated passage dependent land =
inter stratum feature dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous template =
stratum feature template =
land physical template =
default passage based land physical template =
default plated passage based land physical template

This path illustrates:

— A complete subtype chain to establish the starting context
— Aconstrained relationship traversal to find related definitions
— An extended supertype chain navigating through multiple specialization levels

— Multiple constraint validations ensuring the correct relationship type

The path maps from a specialized ARM entity through a constrained relationship to a specialized
template in the MIM.

39 Standard All rights reserved

A.4 Shape aspect navigation
A.4.1 General

Shape aspect navigation patterns demonstrate complex traversals through shape definitions and
feature relationships.

A.4.2 Shape aspect with feature instantiation

This example from I1SO 10303-1698 shows navigation through shape aspects and feature
relationships.

EXAMPLE — Shape aspect to component navigation
laminate component interface terminal =
laminate component feature =
component feature =
shape aspect
shape aspect.of shape -
product definition shape =
property definition
property definition.definition -
characterized definition
characterized definition = characterized product definition
characterized product definition
characterized product definition = product definition
product definition =
component definition =
assembly component =
laminate_ component =
stratum feature template component =
land =
contact size dependent land

This path demonstrates:

— Subtype navigation through shape aspect hierarchy

— Forward navigation via shape aspect.of shape attribute

— Navigation through property definitions

— Type selection using = operator for characterized definition
— Multiple type selections for characterized product definition

— Supertype chain to reach the target entity

The complete path establishes the relationship between a terminal feature and its associated
component.

A.4.3 Shape aspect with relationship constraint

This example shows constrained navigation through shape aspect relationships.

EXAMPLE — Constrained shape aspect relationship
laminate component interface terminal =
laminate component feature =
component feature =

40 Standard All rights reserved

41

shape aspect -

shape aspect relationship.related shape aspect

shape aspect relationship

{shape aspect relationship

shape aspect relationship.name = 'instantiated feature'}
shape aspect relationship.relating shape aspect -

{shape aspect

shape aspect.description = 'interface terminal'}

shape aspect =

land template terminal

This path illustrates:

— Inverse navigation through shape aspect relationship
— Constraint on the relationship name

— Forward navigation to the relating shape aspect

— Constraint on the shape aspect description

— Supertype navigation to the target entity

The path validates both the relationship type and the shape aspect characteristics.

A.5 Alternative paths
A5.1 General

Alternative paths specify multiple valid navigation routes to reach the target entity or attribute
value.

A.5.2 Simple alternative with shared endpoint

This example from ISO 10303-1692 demonstrates alternative subtype chains.

EXAMPLE — Alternative subtype paths
land with join terminal =
[land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition]
[laminate component join terminal =
laminate component feature =
component feature =
shape aspect]

This path specifies:
— Two alternative navigation routes enclosed in] brackets
— First alternative: subtype chain through product definition hierarchy

— Second alternative: subtype chain through shape aspect hierarchy

Standard All rights reserved

— Both alternatives must lead to valid entity instances

The entity 1and with join terminal can bereached through either path.

A.6 Constrained paths

A.6.1 General

Constrained paths apply validation criteria at specific points in the navigation sequence.
A.6.2 Single constraint on entity attribute

This example shows a simple constraint on an entity attribute.

EXAMPLE — Attribute value constraint
laminate component interface terminal =
laminate component feature =
component feature =
shape aspect
{shape aspect
shape aspect.description = 'land interface terminal'}

This path demonstrates:

— Navigation through a subtype chain
— Constraint application at the final entity

— Validation that description attribute equals a specific string value

Only instances with the specified description value satisfy this mapping.
A.6.3 Multiple constraints in sequence

This example shows multiple constraints applied at different points.

EXAMPLE — Multiple sequential constraints
land =
stratum feature template component =
laminate_ component =
assembly component =
component definition =
product definition relationship
{product definition relationship
product definition relationship.name = 'alternate instantiated template'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous_template =
stratum feature template =
land physical template

This path illustrates:

— Asubtype chain leading to a relationship entity

42 Standard All rights reserved

— Constraint on the relationship’s name attribute
— Navigation through the constrained relationship

— Continued navigation through supertype chain

Each constraint must be satisfied for the path to be valid.

A.7 Reference relationships
A.7.1 General

Reference relationship patterns establish connections between entities through named
relationships.

A.7.2 Simple reference relationship

This example shows a basic reference relationship pattern.

EXAMPLE — Named reference relationship
plated passage dependent land =
inter stratum feature dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'reference plated passage'}
product definition relationship.relating product definition -
product definition =
component definition =
assembly component =
laminate component =
inter stratum feature =
plated inter stratum feature =
plated passage

This path demonstrates:

— Establishing context through subtype chain

— Inverse navigation to find relationships

— Constraint identifying the reference relationship by name
— Forward navigation through the relationship

— Supertype navigation to the referenced entity

The pattern establishes the reference plated passage attribute mapping.

43 Standard All rights reserved

A.7.3 Multiple reference relationships

This example from ISO 10303-1692 shows handling multiple reference relationships.

EXAMPLE — Dual reference pattern
unsupported passage dependent land =
inter stratum feature dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'reference passage'}
product definition relationship.relating product definition -
product definition =
component definition =
assembly component =
laminate component =
inter stratum feature =
unsupported passage

This path illustrates:
— Avreference relationship identified by name ‘reference passage’
— Navigation pattern similar to other reference relationships

— Targeting a different entity type (unsupported_passage)

Different reference relationship names distinguish between multiple relationships from the same
source entity.

A.8 Structured template navigation

A.8.1 General

Structured template patterns navigate through geometric template hierarchies.
A.8.2 Structured component to template

This example from 1SO 10303-1698 shows navigation from a structured component to its template.

EXAMPLE — Structured template reference
thermal isolation removal component =
material removal structured component =
structured layout component =
assembly group component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship.name = 'definition usage'}

44 Standard All rights reserved

45

product definition relationship.relating product definition -
product definition =

part template definition =

geometric_ template =

structured template =

single stratum structured template =

material removal structured template =

thermal isolation removal template

This path demonstrates:

— Navigation through structured component hierarchy
— Constrained relationship to template definition

— Navigation through geometric template specializations

— Multiple levels of template specialization

The pattern establishes the relationship between a physical component and its abstract template

definition.

A.8.3 Dependent thermalisolation pattern

This example shows a dependent component referencing its template.

EXAMPLE — Dependent component template reference

Standard

dependent thermal isolation removal component =

thermal isolation removal component =

material removal structured component =
structured layout component =

assembly group component =

assembly component =

component definition =

product definition -

product definition relationship.related product definition
product definition relationship

{product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =

part template definition =

geometric template =

structured template =

single stratum structured template =

material removal structured template =

thermal isolation removal template =

dependent thermal isolation removal template

This path illustrates:

— Additional level of specialization for dependent components
— Same relationship pattern as independent components

— Extended template specialization hierarchy

Dependent and independent components follow parallel mapping patterns with
specialization levels.

different

All rights reserved

A.9 Material removal patterns
A9.1 General

Material removal patterns demonstrate navigation through specialized component and template
hierarchies.

A.9.2 Electrical isolation removal

This example from I1SO 10303-1698 shows electrical isolation removal mapping.

EXAMPLE — Electrical isolation component to template
dependent electrical isolation removal component =
electrical isolation laminate component =
material removal laminate component =
laminate component =
assembly component
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous template =
material removal feature template =
electrical isolation removal template =
dependent electrical isolation removal template

This path demonstrates:

— Material removal component specialization hierarchy
— Constrained definition usage relationship

— Material removal feature template hierarchy

— Parallel structure between component and template hierarchies

The pattern establishes the mapping for electrical isolation removal features.

A.10 Attachment size based patterns
A.10.1 General

Attachment size based patterns demonstrate navigation to templates parameterized by attachment
dimensions.

A.10.2 Contact size dependent land

This example from ISO 10303-1692 shows navigation to an attachment size based template.

46 Standard All rights reserved

EXAMPLE — Attachment size based template reference
contact size dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous_template =
stratum feature template =
land physical template =
default attachment size based land physical template

This path demonstrates:

— Navigation from a size-dependent component
— Constrained relationship to template definition
— Specialization to attachment size based template

— Therelationship between component sizing and template selection

The pattern enables parameterization of land geometry based on attached component sizes.

A.11 Passage based patterns
A.11.1 General

Passage based patterns establish relationships between land features and passage features that
they interface with.

A.11.2 Unsupported passage based land

This example shows the mapping for lands based on unsupported passages.

EXAMPLE — Unsupported passage based template
unsupported passage dependent land =
inter stratum feature dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}

47 Standard All rights reserved

product definition relationship.relating product definition -
product definition =

part template definition =

single stratum template =

single stratum continuous_template =

stratum feature template =

land physical template =

default passage based land physical template =

default unsupported passage based land physical template

This path illustrates:

— Navigation from passage-dependent land
— Template specialization for passage-based features
— Additional specialization for unsupported passages

— Hierarchical template classification

The pattern enables land geometry to be defined relative to associated passage features.
A.11.3 Plated passage based land

This example shows the mapping for lands based on plated passages.

EXAMPLE — Plated passage based template
plated passage dependent land =
inter stratum feature dependent land =
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition -
product definition relationship.related product definition
product definition relationship
{product definition relationship
product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous_template =
stratum feature template =
land physical template =
default passage based land physical template =
default plated passage based land physical template

This path demonstrates:
— Same base pattern as unsupported passage based land
— Different final template specialization

— Consistent mapping structure across passage types

The pattern maintains structural consistency while accommodating different passage metallization
types.

48 Standard All rights reserved

49

A.12 Alternate definition patterns
A.12.1 General

Alternate definition patterns provide alternative template references for entities that support
multiple configuration options.

A.12.2 Alternate land definition

This example from 1SO 10303-1692 shows the mapping for alternate land template definitions.

EXAMPLE — Alternate template instantiation
land =
stratum feature template component =
laminate component =
assembly component =
component definition =
product definition relationship
{product definition relationship
product definition relationship.name = 'alternate instantiated template'}
product definition relationship.relating product definition -
product definition =
part template definition =
single stratum template =
single stratum continuous template =
stratum feature template =
land physical template

This path demonstrates:

— Direct navigation to relationship entity (no inverse navigation)

— Constraint specifying ‘alternate instantiated template’ relationship
— Navigation through the relationship to template

— Simplified path for alternate definitions

The pattern enables entities to reference multiple template definitions for different configuration
scenarios.

A.13 Validation scenarios

A.13.1 General

These examples illustrate various validation scenarios and error conditions.
A.13.2 Valid path with all constraints satisfied

This example shows a valid path where all constraints are satisfied.

EXAMPLE — Fully valid reference path
land =
stratum feature template component =
laminate component =
assembly component =

Standard All rights reserved

component definition =

product definition -

product definition relationship.related product definition
product definition relationship

{product definition relationship

product definition relationship.name = 'definition usage'}
product definition relationship.relating product definition -
product definition =

part template definition =

single stratum template =

single stratum continuous_template =

stratum feature template =

land physical template

Validation checks:

— Allentities exist in the EXPRESS repository

— All subtype relationships are valid

— Attributes used for navigation exist

— Relationship constraints are syntactically correct
— Complete path from ARM to MIM

This path would pass all validation rules.
A.13.3 Invalid entity reference

This example shows an error condition with an invalid entity reference.

EXAMPLE — Invalid entity in path
land =
invalid entity name =
laminate component =
assembly component

Validation errors:

— Entity ‘invalid_entity_name’ does not exist in the EXPRESS repository
— Subtype relationship cannot be validated

— Pathisincomplete

This path would fail entity existence validation.
A.13.4 Invalid attribute reference

This example shows an error condition with an invalid attribute reference.

EXAMPLE — Invalid attribute navigation
land =
stratum feature template component =
laminate component
laminate component.invalid attribute -
product definition

50 Standard All rights reserved

Validation errors:
— Attribute ‘invalid_attribute’ does not exist on entity ‘laminate_component’
— Navigation cannot proceed

— Pathis broken

This path would fail attribute existence validation.
A.13.5 Constraint validation failure

This example shows a constraint that cannot be validated.

EXAMPLE — Invalid constraint syntax
product definition -
product definition relationship.related product definition
product definition relationship

{product definition relationship
product definition relationship.invalid attribute = 'value'}

Validation errors:

— Attribute ‘invalid_attribute’ does not exist on ‘product_definition_relationship’
— Constraint cannot be evaluated

— Path may proceed but constraint is invalid

This path would generate a constraint validation warning.
A.13.6 Type mismatch in navigation

This example shows a type mismatch error.
EXAMPLE — Type incompatibility
shape aspect

shape aspect.of shape -
product definition

Validation errors:
— Attribute ‘of_shape’ has type ‘product_definition_shape’
— Expected target is ‘product_definition_shape’, not ‘product_definition’

— Type mismatch in navigation

This path would fail type compatibility validation.

A.14 Complex combined patterns
A.14.1 General

These examples demonstrate combinations of multiple navigation patterns in a single reference
path.

51 Standard All rights reserved

52

A.14.2 Multi-constraint round-trip with alternatives

This hypothetical example combines multiple advanced patterns.

EXAMPLE — Complex combined navigation

specialized component =

[base component type a =

component definition]

[base component type b =

alternate component definition]

{component definition

component definition.description = 'specialized'}
component definition =

product definition -

product definition relationship.related product definition
product definition relationship

{product definition relationship

product definition relationship.name = 'usage'}

product definition relationship.relating product definition -
{product definition

product definition.description = 'template'}

product definition =

template definition =

specialized template

This path demonstrates:

— Alternative paths for initial navigation

— Constraints on both source and target entities
— Round-trip through relationship

— Multiple constraint validations

— Combined use of all major operators

Such complex paths require careful validation at each step.

A.15 Summary of example patterns

The examples in this annex demonstrate:

Standard

Simple subtype and supertype chains establishing entity hierarchies
Round-trip navigation through forward and inverse attribute references
Constrained paths validating attribute values at specific points
Alternative paths providing multiple valid navigation routes

Reference relationship patterns establishing named entity connections

Shape aspect navigation through feature and property hierarchies

Template reference patterns connecting physical components to abstract definitions

All rights reserved

h) Complex combined patterns using multiple operators and constraints

Each pattern serves specific mapping requirements in the ISO 10303 modular architecture, enabling
precise specification of how ARM entities and attributes correspond to MIM entity instances and
values.

53 Standard All rights reserved

ANNEXB
(INFORMATIVE)

BIBLIOGRAPHY

54 Standard All rights reserved

	Foreword
	Introduction
	0.1 General
	0.2 Historical context

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Overview
	4.1 General
	4.2 Path structure
	4.3 Basic example
	4.4 Path with attribute navigation
	4.5 Path with constraints
	4.6 Role in ISO 10303 modules

	5 Operators
	5.1 General
	5.1.1 Description

	5.2 Subtype operator (symbol: =​)
	5.2.1 Description
	5.2.2 Syntax pattern
	5.2.3 Semantics
	5.2.4 Example

	5.3 Supertype operator (symbol: =​>​)
	5.3.1 Description
	5.3.2 Syntax pattern
	5.3.3 Semantics
	5.3.4 Example

	5.4 Forward navigation operator (symbol: -​>​)
	5.4.1 Description
	5.4.2 Syntax pattern
	5.4.3 Semantics
	5.4.4 Example

	5.5 Inverse navigation operator (symbol: -​)
	5.5.1 Description
	5.5.2 Syntax pattern
	5.5.3 Semantics
	5.5.4 Example

	5.6 Constraint block operators
	5.6.1 Description
	5.6.2 General
	5.6.3 Constraint start (operator: ​{)
	5.6.4 Syntax pattern
	5.6.5 Constraint end (operator: })
	5.6.6 Equality operator (symbol: =​)
	5.6.7 Syntax pattern
	5.6.8 Example

	5.7 Alternative section operators
	5.7.1 Description
	5.7.2 Required sections (operator: […​])
	5.7.3 Syntax pattern
	5.7.4 Semantics
	5.7.5 Alternative sections (operator: (…​))
	5.7.6 Syntax pattern
	5.7.7 Semantics

	5.8 Aggregate access operators
	5.8.1 Description
	5.8.2 Element access operator (symbol: [i])
	5.8.3 Syntax pattern
	5.8.4 Semantics
	5.8.5 Ordered element access operator (symbol: [n])
	5.8.6 Syntax pattern
	5.8.7 Semantics

	5.9 Special operators
	5.9.1 Description
	5.9.2 Negation operator (symbol: !)
	5.9.3 Syntax pattern
	5.9.4 Semantics
	5.9.5 Line continuation operator (symbol: \)
	5.9.6 Syntax pattern
	5.9.7 Semantics
	5.9.8 Comment operator (symbol: -​-​)
	5.9.9 Syntax pattern
	5.9.10 Semantics
	5.9.11 Select extension operators (symbol: *)
	5.9.12 Syntax pattern
	5.9.13 Semantics
	5.9.14 Syntax pattern
	5.9.15 Semantics
	5.9.16 Supertype entity marker (symbol: ||)
	5.9.17 Syntax pattern
	5.9.18 Semantics
	5.9.19 Relationship tree marker (symbol: *)
	5.9.20 Syntax pattern
	5.9.21 Semantics
	5.9.22 Required reference path marker (symbol:)
	5.9.23 Syntax pattern
	5.9.24 Semantics

	6 Navigation patterns
	6.1 General
	6.2 Subtype chain navigation
	6.2.1 Pattern description
	6.2.2 Syntax pattern
	6.2.3 Semantics
	6.2.4 Example

	6.3 Supertype chain navigation
	6.3.1 Pattern description
	6.3.2 Syntax pattern
	6.3.3 Semantics
	6.3.4 Example

	6.4 Forward attribute navigation
	6.4.1 Pattern description
	6.4.2 Syntax pattern
	6.4.3 Semantics
	6.4.4 Example

	6.5 Inverse attribute navigation
	6.5.1 Pattern description
	6.5.2 Syntax pattern
	6.5.3 Semantics
	6.5.4 Example

	6.6 Round-​trip navigation
	6.6.1 Pattern description
	6.6.2 Syntax pattern
	6.6.3 Semantics
	6.6.4 Example

	6.7 Constrained navigation
	6.7.1 Pattern description
	6.7.2 Syntax pattern
	6.7.3 Semantics
	6.7.4 Example

	6.8 Constrained round-​trip navigation
	6.8.1 Pattern description
	6.8.2 Syntax pattern
	6.8.3 Semantics
	6.8.4 Example

	6.9 Mixed subtype and attribute navigation
	6.9.1 Pattern description
	6.9.2 Syntax pattern
	6.9.3 Semantics
	6.9.4 Example

	6.10 Alternative path navigation
	6.10.1 Pattern description
	6.10.2 Syntax pattern
	6.10.3 Semantics
	6.10.4 Example

	6.11 Required combined path navigation
	6.11.1 Pattern description
	6.11.2 Syntax pattern
	6.11.3 Semantics
	6.11.4 Example

	7 Constraints
	7.1 General
	7.2 Constraint syntax
	7.2.1 Basic structure
	7.2.2 Multiple constraints

	7.3 Value types
	7.3.1 String values
	7.3.2 Numeric values
	7.3.3 Boolean and logical values
	7.3.4 Enumeration values

	7.4 Negated constraints
	7.4.1 Syntax
	7.4.2 Semantics
	7.4.3 Example

	7.5 Constraint application
	7.5.1 Applying to current entity
	7.5.2 Applying during navigation

	7.6 Constraint validation
	7.6.1 Entity validation
	7.6.2 Attribute validation
	7.6.3 Value validation
	7.6.4 Type compatibility

	7.7 Common constraint patterns
	7.7.1 Relationship type constraints
	7.7.2 Geometry type constraints
	7.7.3 Description constraints
	7.7.4 Multiple attribute constraints

	8 Validation rules
	8.1 General
	8.2 Entity validation
	8.2.1 Entity existence
	8.2.2 Entity name case sensitivity

	8.3 Relationship validation
	8.3.1 Subtype relationship validation
	8.3.2 Supertype relationship validation

	8.4 Attribute validation
	8.4.1 Attribute existence
	8.4.2 Attribute name case sensitivity

	8.5 Navigation validation
	8.5.1 Forward navigation validation
	8.5.2 Inverse navigation validation
	8.5.3 Navigation continuity

	8.6 Constraint validation
	8.6.1 Constraint entity validation
	8.6.2 Constraint attribute validation
	8.6.3 Constraint value type validation

	8.7 Path completeness validation
	8.7.1 Start entity validation
	8.7.2 End entity validation

	8.8 Error collection
	8.9 Warning conditions
	8.10 Validation output
	8.10.1 Success output
	8.10.2 Error output
	8.10.3 Output formats

	Annex A (normative) Examples
	A.1 General
	A.2 Simple entity chains
	A.2.1 General
	A.2.2 Basic subtype chain
	A.2.3 Extended subtype chain

	A.3 Round-​trip navigation
	A.3.1 General
	A.3.2 Simple round-​trip with constraint
	A.3.3 Complex round-​trip with multiple constraints

	A.4 Shape aspect navigation
	A.4.1 General
	A.4.2 Shape aspect with feature instantiation
	A.4.3 Shape aspect with relationship constraint

	A.5 Alternative paths
	A.5.1 General
	A.5.2 Simple alternative with shared endpoint

	A.6 Constrained paths
	A.6.1 General
	A.6.2 Single constraint on entity attribute
	A.6.3 Multiple constraints in sequence

	A.7 Reference relationships
	A.7.1 General
	A.7.2 Simple reference relationship
	A.7.3 Multiple reference relationships

	A.8 Structured template navigation
	A.8.1 General
	A.8.2 Structured component to template
	A.8.3 Dependent thermal isolation pattern

	A.9 Material removal patterns
	A.9.1 General
	A.9.2 Electrical isolation removal

	A.10 Attachment size based patterns
	A.10.1 General
	A.10.2 Contact size dependent land

	A.11 Passage based patterns
	A.11.1 General
	A.11.2 Unsupported passage based land
	A.11.3 Plated passage based land

	A.12 Alternate definition patterns
	A.12.1 General
	A.12.2 Alternate land definition

	A.13 Validation scenarios
	A.13.1 General
	A.13.2 Valid path with all constraints satisfied
	A.13.3 Invalid entity reference
	A.13.4 Invalid attribute reference
	A.13.5 Constraint validation failure
	A.13.6 Type mismatch in navigation

	A.14 Complex combined patterns
	A.14.1 General
	A.14.2 Multi-​constraint round-​trip with alternatives

	A.15 Summary of example patterns

	Annex B (informative) Bibliography

